MODULES OVER PRINCIPAL IDEAL DOMAINS

LEVIN CEGLIE

ABSTRACT. We present the fundamental structure theorems for modules over principal
ideal domains and provide a selection of their applications. In particular, we show how
the Smith Normal Form and the Jordan Normal Form can be derived from these structure
theorems.

1. INTRODUCTION

Modules over rings are often introduced as a generalization of vector spaces and it is
therefore tempting to think of modules in the same way as vector spaces. However, the
following pathological example will illustrate that the intuition that we have built up
during studying vector spaces is in general not applicable to modules.

Consider the ring R = Z[/—5] and the ideal I = (2,1 + +/=5). Then I defines a
R-module and as such I is finitely generated by the set {2,1 + /—5}. But

(14++vV=5)-2+(=2)-(1++vV=5)=0

shows that these elements are not linearly independent. In fact, by an analogous choice of
coefficients any two elements x,y of I are linearly dependent. On the other hand, one can
show that I is not principal, i.e. there is no single element that generates I (one way to do
this is by considering the field norm N(a + by/—5) = a? + 5b%). This example illustrates
a key difference between modules and vector spaces. Namely, if a vector space contains
a finite spanning set, then it contains a finite basis. This example shows that this is in
general not true for modules. Furthermore, we notice that even though R (viewed as an
R-module) is free of rank one, the submodule I is not free and is something in-between
the zero-module and R. Again this cannot happen in a vector space. If we consider a
vector space of dimension one, then the only subspaces are the zero space and the whole
space itself.

Remarkably, if we restrict our attention to modules over principal ideal domains, their
structure becomes significantly more regular. The rest of this text will be concerned with
exploring this well-behaved structure of modules over principal ideal domains and discuss
some of its consequences.

In what follows, we assume that the reader is familiar with Ring Theory and the very
basics of module theory. However, we do not assume any prior knowledge about modules
over principal ideal domains.

2. STRUCTURE THEOREMS

Our first important theorem asserts that if we consider a submodule of a freely generated
module over a principal ideal domain, then we cannot end up as in the example provided
in the introduction, i.e. the submodule will always be freely generated as well.

We fix a principal ideal domain R for the remainder of this section.

Theorem 1. Let F' be a free module of finite rank over R and M a submodule. Then M
is free of rank less than or equal to the rank of F.!

1Using the axiom of choice one can prove this theorem without the assumption that F' has finite rank,
see [Rot15, B-2.28].
1
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Proof. Let eq,...,e, be a basis of F' over R. Set

.
M, = MNP Re;,
i=1
for r = 0,...,n, where the empty sum is defined as the zero module. We now prove by
induction on r, that each M, is finitely generated with rank < r. The zero-module is free
of rank zero, hence the statement holds for » = 0. Now assume that the statement holds
for 0 <r <mn. Let p: F' — R be the projection to the (r 4+ 1)’th coordinate, i.e. the linear

continuation of
1 1=r+1
ple;) = {

0 otherwise.

fori =1,...,n. Then p defines a module homomorphism and hence p(M, 1) is a submod-
ule of R, i.e. an ideal. We now use the fact that R is a principal ideal domain to obtain a
generator « of p(M,11). If a = 0, then by construction M, = M, and we are done with
the induction step. Otherwise, choose v € p~!(a). We claim that M, 1 = M, ® Rv, which
would imply that M, is free of rank < r + 1. Indeed, let © € M, ;1. Then p(z) € Ra,
hence there exists a b € R such that p(z — bv) = 0. This shows that M,1; = M, + Ruv.
Furthermore, if x € M, N Rv, then x = bv for some b € R. But since p(M,) = {0}, we
have p(z) = baw = 0, hence b = 0, which implies = 0. This shows that the sum is direct
and thus concludes the proof. O

Next, we will proof another key theorem in the theory of modules over principal ideal
domains. It is essentially a statement about finding aligned bases of a module and a
submodule, as we will illustrate after we give the proof.

Theorem 2. Let F' be a free module over R, and let M be a finitely generated submod-
ule. Then there exists a basis B of F', elements e1,...,e, € B, and non-zero elements
ai,...,a, € R such that

n
M = @Raiei,
i=1
and aylag| ... |ay.

Proof. We first notice that given a basis of F', we can write each generator of M as linear
combinations of finitely many elements of said basis. Since M is finitely generated, we
obtain a finite set of linearly independent elements of F' that generate a free submodule
F’ such that M C F/ C F. We can thus assume without loss of generality that F has
finite rank.

We note that in the case where F' or M is the zero-module the theorem holds trivially.
We may thus assume for a smoother argument that neither F' nor M is the zero-module.

To begin, let us consider the set of ideals

{e(M) : p € Hompg(F, R)}.

Since R is a principal ideal domain, the above set contains a maximal element under
inclusion, say A(M) for A € Hompg(F, R) (see Lemma A.2 for details). Again using the
fact that R is a principal ideal domain we find an a; € R such that A(M) = (a1). Let
x1 € M be such that A(z1) = a;. We claim that for any ¢ € Hompg(F,R) we have
©(x1) € (a1). Indeed, let d € R be a greatest common divisor of ¢(z1) and a; and let
a, f € R besuch that d = ap(z1)+Pa; (this is possible since R is a principal ideal domain).
By construction we have (a1) C (d) C (ayp + BA)(M) and now maximality of (a1) = (M)
implies (a1) = (d). This shows that a; is a divisor of ¢(z1) and hence ¢(z1) € (a1), as
claimed. Finally, we note that the assumption that M is not the zero-module implies that
al 75 0.
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Let v1,...,v, be a basis of F' and write 1 = ajvy + - - - + apv, with «; € R for all
1. By considering the functionals given by the projections onto the i’th coordinate with
respect to the basis vy, ...,v,, we obtain with the conclusion of the previous paragraph
that a1|a; for all 2. Thus, there exists an element e; € F' such that x; = aje;. Finally, we
notice that linearity of A together with a; # 0 imply that A(e;) = 1.

We now claim that F' may be decomposed in to the direct sum

F = Req & ker .
Indeed, let v € F, then
Av — A(w)er) = A(v) — A(v)A(e1) =0,

and hence v — A(v)e; € kerA. This shows F' = Re; + kerA. Now, let v € Re; NkerA. Write
v = ae; for some o € R. Then, we obtain A(v) = aX(e1) = 0. Since A(e;) = 1, this yields
a =0 and so v = 0. This shows Re; NkerA = {0} and thus the above decomposition into
a direct sum holds. Using the fact that A(M) = (a1), an analogous argument shows

M = Raje; & (kerA N M).

Now if kerA N M is the zero-module we are done. Otherwise, we apply Theorem 1 to
obtain that ker\ is again a free module of finite rank and kerA N M a finitely generated
submodule. We can thus inductively repeat the whole argument to obtain the decompo-
sitions

n n
F=F®@Rei, and M =D Rae;,

i=1 i=1
where I is a possibly trivial free submodule of F. Finally, we claim that this construction
yields ajlag| ... |ay, without any further modifications. Indeed, let ; denote the projection
of F' onto the coordinate of e; and consider the functional ¢ = 71 +m2. Then ¢(aje;) = a1
and hence (a1) C ¢(M). But by maximality of (a;) we have (a1) = ¢(M). We now obtain
v(azes) = ag € (a1), i.e. aj]az. Once again, by repeating this argument inductively we
obtain aj|as|...|an, thus concluding the proof. O

Remark 3. We note that in Theorem 2 we can always append zeros to the sequence of a;’s
such that in the case where F' as finite rank, we have

F= EnBlRei, M = é?Raiez‘,
1= 1=

with aq]as]...|ay.

As promised, we will now provide an illustration of Theorem 2. Consider the Gaussian
integers Z[i| viewed as a Z-module and the submodule M generated by —1 + ¢ and 2 + 1.
If we consider the decompositions Z[i] = Z® Zi and M = Z(—1+1i) ® Z(2+1), then these
are not aligned, as the left hand side of Figure 1 shows. However, Theorem 2 asserts the
existence of aligned bases. Indeed, we find Z[i]| = Z(—1+1i) ®Zi and M = Z(—1+1) ® Z3i.
These are visualized on the right hand side of Figure 1.

The following theorem builds on the previous results to give a complete classification of
finitely generated modules over principal ideal domains, showing that every such module
decomposes into a direct sum of a free part and cyclic torsion modules.

Theorem 4. Let M be a finitely generated R-module. Then there exist integers r,k > 0
and element dy,...,dr € R~ ({0} UR*) such that

k
M= R &P R/(d),
=1

and dl‘dg‘ e |dk
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FIGURE 1. Nonaligned and aligned bases for module and submodule

Proof. Let x1,...,x, be generators of M. Consider the module R" and denote by ey, ..., e,
the standard basis of R", i.e. e; is the vector with all zeros except a one at the i-th entry.
Now, let ¢ : R — M be the linear map that sends e; to x; for all <. This map is unique

and well-defined, because e1, ..., e, defines a basis of R"™. Since x1,...,x, generate M, ¢
is surjective. Thus, by the first isomorphism theorem we have
M = R" /kere.
Since R" is free, we may apply Theorem 2 to obtain a basis €1, . . ., €, of R” and elements

ai,...,an € R such that kerp = @;" | Ra;é; and ailas|...|a,. We claim that

R" [keryp = @R/(ai).
i=1
Indeed, consider the map

¢ R = éRéi — éR/(CLZ)
=1 =1

Zaﬁiéi — (331 + (al), ey T+ (an))

We notice that ¢ defines a surjective module homomorphism. Furthermore, we note that
to conclude our claim with the first isomorphism theorem we only need to show that
keri) = kergp. Let € R™ and write x = )" | x;€; for some z; € R. Then, = € kery if
and only if z; € (a;) for all ¢, which in turn is the case if and only if = € kerp. This shows
kery = kerep.

Thus, by putting everything together, we obtain

M= @R/(al)7
=1

where ajlag]...|a,. There are now three cases of a;’s to distinguish. If a; is a unit, then
R/(a;) is the zero-module, so it does not affect the direct sum and we may thus omit it
in the sequence of a;’s. If a; is zero, then R/(a;) = R. Let r > 0 be the number of zeros
appearing in the sequence of a;’s. The final case to consider is if a; is a non-zero non-unit
element. We collect these remaining a;’s into a sequence dy, ..., d; while preserving their
ordering, i.e. we still have d|ds|...|d,. Putting things together we obtain

k
M= R &P R/(d),
i=1
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thus concluding the proof. O

Remark 5. We note that Theorem 4 is in essence a corollary of Theorem 2. The length
of the presented proof is simply a consequence of the fairly detailed explanation of the
resulting isomorphisms.

Next, we show an alternative formulation of Theorem 4 as it is sometimes more useful.

Theorem 6. Let M be a finitely generated R-module. Then there exist integers r,t > 0,
prime elements p1,...,ps € R, and integers v; > 1 such that

t
M =R &P R/(P)).
=1

Proof. By Theorem 4 we have integers r,k > 0 and elements d; € R~ ({0} U R*) such
that

k
M = R" & P R/(d;).
j=1

Since R is a principal ideal domain, there exists for each d; a unique factorization
b=

where p;; is prime and v;; > 1 is an integer for each i. Collecting all p;;’s and v;;’s into

one sequence each, we obtain from the Chinese Remainder Theorem that

k t
D r/(d) = DR/,

i=1

thus concluding the proof. O

We conclude this section by proving that the decompositions in Theorem 4 and Theo-
rem 6 are unique in a certain sense.

Theorem 7. The decomposition in Theorem 6 is unique up to reordering of the pairs
(pi,vi) and multiplication of the p;’s by a unit.

Proof. Let M be a finitely generated R-module. Then by Theorem 6, there exist integers
r,t > 0, prime elements p1,...,p;s € R, and integers v; > 1 such that

M =R &P R/(P)). (*)
=1

Let p € R be a prime element and v > 0 an integer. We notice that p”M/p*T'M
defines a module over R/(p). (The action of R/(p) on p* M /p**'M is defined by taking
any representative and using the action of R on p¥ M /p**1 M. This is well-defined because
pr = 0 for any x € p* M /p*TtM.) Hence p* M /p*"' M defines a vector space over the field
R/(p). We claim that

dimm ) (0" M/p" M) = v+ {(pisvi) 07 | P}

Assuming this claim, the theorem follows. Indeed, assume there is another decomposition
of the type as in Theorem 6. We know that for vector spaces the dimension is well-defined.
So by varying p and v we see that the decompositions must be the same up to reordering
the pairs (p;, ;) and multiplying the p;’s by a unit.

It thus only remains to prove the claim. To determine the dimension we note that for
vector spaces we know that the dimension is preserved via isomorphisms. So it is enough
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to consider what happens to the right hand side of the isomorphism in (x). Consider the
composition

R — p’R — p'R/p*™'R

r o pz o pla+ (pUth).
Its kernel is exactly pR, hence R/(p) = p*R/p**'R as R/(p) vector spaces. This shows
that the contribution of the free part in the decomposition to the dimension of the vector
space p* M /p*t1 M is exactly r.

Let now (p;,v;) be a pair occurring on the right hand side of (%) such that p*! | p7i.

Then we have (p{?) C (p”™). So by the third isomorphism theorem we obtain

(0" R/(p}"))/ (0" R/ (p")) = p"R/p"*'R.
Hence, the summand R/(p;*) contributes exactly one dimension.
Now consider a pair (p;, v;) such that p**1 ¢ p;*. Consider the surjective homomorphism

v R/(pi") = R/(p]")
z s p' .
Then, by unique factorization in R we have
kerp = {z + (") € R/(p") : p"" 'z € (p)")}
={z € R:p"a = piy for some y € R}/ (p})
0+ ().
Hence, p" T R/(p!") = R/(p}?) and so the quotient (p”R/(p}"))/(p* T R/(p}")) is the zero-

v,

module. This shows that in this case the summand R/(p]") does not contribute to the
dimension.
Putting the everything together proves the claim and thus the theorem. (|

Corollary 8. The decomposition in Theorem / is unique up to multiplication of the d;’s
by a unit.

3. APPLICATIONS

There are many applications of the theorems proven in Section 2. For this exposition
we will focus on matrix normal forms. We begin with the so called Smith Normal Form,
which in a way can be viewed as equivalent to Theorem 2, as each follows relatively quickly
from the other.

Theorem 9 (Smith Normal Form). Let A € Mat,, ,(R) be a matriz. Then there exist
invertible matrices P € GLy,(R) and Q € GL,,(R), an integer k € {1,...,min(n,m)} and
elements di,...,d, € R~ {0} with di|dz|...|dy such that

dq

PAQ = :
Q i

where the blank entries are zero.

Proof. Let N be the image of A in R". Then N is a submodule and by Theorem 2
there exists a basis v1,...,v, of R™ and non-zero elements di,...,d; € R such that
N = @le Rd;v;. Let w; € R be such that Aw; = d;v; for each i = 1,...,k. By
construction, linear independence of the v;’s implies linear independence of the w;’s. By
Theorem 1 kerA is a free submodule. We claim that any basis of ker A expands the w;’s
to a basis of R™. Indeed, let x € R™ and write Az = Zle a;v; for a; € R. Then by
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construction we have x — a;w; € kerA. In addition, we also have @F_| Rw; NkerA = {0}.
This proves that R™ = kerA & @le Rw;, hence our claim. In particular, there exists
W41y, Wy € kerA such that wy, ..., w,, defines a basis of R™. We now obtain the
following commuting diagram.

P, Rw; = R™ —2— R" = @™, Ru;

! J

P Rw; =M —~— N =®F | Rdv,
wir—d;v;
We see that by viewing R™ and R" in the bases given by the w;’s and v;’s respectively the
linear map induced by A simplifies significantly. Let () denotes the change-of-basis matrix
that goes from the basis w1, ..., w,, to the standard basis eq,...,en,, i.e. Quw; = ¢; for
all 7. Furthermore, let P denote the change-of-basis matrix that goes from the standard
basis e1,...,e, of R™ to the basis vi,...,v,, i.e. Pe; = v; for all 7. Together with the
commutative diagram we see that this choice of P and ) conclude the proof. O

Next, we explore how the Jordan Normal Form arises as a consequence of the structure
theorems presented in Section 2. Recall that the Jordan Normal Form is a statement about
endomorphisms of vector spaces. At first glance, it may not be apparent how the theory
of modules over principal ideal domains is useful in the more structured and well-behaved
realm of vector spaces. The following construction will clarify this connection.

Let V' be a vector space over a field K and T € Endg (V') an endomorphism of V. Then
by defining

K[X]xV =V
(fiv) = f(T)(v),

we can view the pair (V,T') as a K[X]-module. Conversely, let M be a K[X]-module.
Then, by restricting the multiplicative action of K[X] on M to K, we see that M defines
a vector space over K. Furthermore, if we define T': M — M via v — X - v, then we
have T' € Endg (M) and the action of K[X] on M is consistent with the one defined
above. This construction shows that the study of pairs (V,T') corresponds to the study of
K[X]-modules.

Before we begin, a note on notation. Given a vector space V over a field K and
an endomorphism 7' € Endg(V), we will write (V,T) to emphasize the K[X]-module
structure induced by the construction above.

Lemma 10. Let K be a field and let V and W be vector spaces over K. Let further T and
S be endomorphisms of V- and W respectively. Then (V,T) and (W,S) are isomorphic as
K[X]-modules if and only if there exists a vector space isomorphism ¢ : V. — W such that
T=¢ loSop.

Proof. We first assume that there exists a K[X]-module isomorphism ¢ : (V,T) — (W, 5).
Then ¢ can be viewed as an isomorphism between V' and W with the additional property
that (X -v) = X - p(v) for all v € V. This implies ¢p(Tv) = S¢(v) for all v € V. Hence,
T=ptoSop.

Let us now assume that we have a vector space isomorphism ¢ : V — W such that
T = ¢ 1 oS o¢p. Then, we have p(Tv) = Sp(v), i.e. p(X -v) =X - ¢(v) for all v € V.
By induction on the degree of the polynomials, we obtain that ¢ is K[X]-linear. Hence ¢
defines a module isomorphism between (V,T') and (W, 5). O

Lemma 11. Let K be a field and f(X) = (X — N\)Y for some A € K and some integer
v > 1. Consider the K[X]-module K[X]/(f) and let T be the corresponding endomorphism
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(according to the construction above) defined by v — X -v. Then there exists a K-basis B
of K[X]/(f) such that

[T]s = € Mat,, (K).
A1
A

Proof. We claim that the ordered set B = (X — \)*"1 + (f),..., (X = X) + (f), 1+ (f))
defines a basis of K[X]/(f). Indeed, we first notice that by the euclidean algorithm any
equivalence class in K[X]/(f) has a representative with degree < v. Thus, for an arbitrary
g+ (f) € K[X]/(f) we may assume that g has degree < v. It is then clear that g + (f)
lies in the K linear span of 1, X,..., X"~!. But by considering the K linear combination
g(X + X\) and substituting every X with an X — A, we see that B spans K[X]/(f). We
also find that if Zzl'/:_Ol a;(X — A)* = 0 for some a;’s in K, then by comparing coefficients
starting with a,_1 we find that a; = 0 for all . This shows that B defines a K-basis of
K[X]/(f). We now notice that

(T =N((X =N+ ()

(X =) (X =N+ (f)
= (X =) (X =N+ (f)
= (X ="+ (),
foralli=0,...,v—2and
(T =M((X ="+ () = (X =0 (X ="+ (f)
=X =N"+()
=0+ (f).
This shows that [T']z is of the desired form, concluding the proof. O

Theorem 12 (Jordan Normal Form). Let K be an algebraically closed field, V' a finite
dimensional vector space over K and T and endomorphism of V.. Then there exists a basis
B of V such that [T is in Jordan Canonical Form, i.e.

A1

Proof. We view (V,T) as a K[X]-module as defined in the construction above. We note
that since V' has finite dimension over K it is certainly finitely generated as a K[X]-
module. Furthermore, we know that K[X] is a principal ideal domain. Thus, we may
apply Theorem 6 to obtain
¢
(V. T) = K[X]" & D KIX]/(n").
i=1
for some integers r,t > 0 and prime elements pi,...,p; € K[X]|. We will denote the
right hand side by M. Let ¢ : (V,T) — M be a K[X]-module isomorphism. As discussed
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before, we may view ¢ as a vector space isomorphism and therefore M has finite dimension
over K. This forces r = 0.

By our assumption that K is algebraically closed, we obtain that the prime elements of
K[X] are exactly given by all linear polynomials. Using this and the fact that associate
elements generate the same ideal, we may assume that p; = X — \; for some \; € K for
every ¢. We may now apply Lemma 11 to each summand of M to obtain a K-basis C of
M such that

At

where S : M — M is the vector space endomorphism of M defined by v — X - v. Let
n be the dimension of M (and V') over K and denote by ¢ : M — K™ the vector space
coordinate map corresponding to the basis C of M. Then by Lemma 10 the following
diagram commutes.

V2 M2 K
14 e
Vi Mo K

Hence, if we let B be the basis of V corresponding to the standard basis of K™ via the
vector space isomorphism ¢ o : V — K™ then we have [T]z = [S]¢, thus concluding the
proof. O

Remark 13. The assumption of an algebraically closed field in Theorem 12 may be relaxed
to requiring that the characteristic polynomial of T splits over K. This stronger version,
can also be proven using the same strategy. However, it would require some more work
relating the characteristic polynomial of T" to the irreducible polynomials obtained from
the decomposition of Theorem 6.

Remark 14. Following the same strategy of Lemma 11 and Theorem 12 but choosing the
basis 1+ (f), X 4+ (f),..., XL+ (f) for K[X]/(f), where d denotes the degree of f, gives
rise to the so called Frobenius Normal Form.

APPENDIX A. AUXILIARY RESULTS

Lemma A.1. Let R be a principal ideal domain. Then R satisfies the ascending chain
condition of ideals. That is, for every ascending chain of ideals I; C Is C ... in R there
exists an index n > 1 such that I, = I,, for all k > n.

Proof. Set I = |J;~; 1i- One checks that I defines an ideal in R. Since R is a principal
ideal domain, there exists an a € R such that I = (a). By definition of I this implies
that there exists an integer n > 1 such that a € I,. Now for any k > n we have have the
following chain of inclusions I = (a) C I,, C I, C I, and hence I,, = Ij. O

Lemma A.2. Let R be a principal ideal domain. Then every non-empty set of ideals of
R contains a mazximal element under inclusion.

Proof. Let A be a non-empty set of ideals of R. Assume, by way of contradiction, that A
does not contain a maximal element under inclusion. Let M; € A and inductively choose
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an ideal My1 € A such that My C My for all £ > 1. This is possible because otherwise
some M}, would be a maximal element under inclusion in A. The sequence of ideals defined
this way gives a contradiction to Lemma A.1, concluding the proof. O
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